Host-induced silencing of a nematode chitin synthase gene decreases abundance of rhizosphere fungal community while enhancing

Author:

Tian Shuan,Shi Xue,Qu Baoyuan,Kang Houxiang,Huang Wenkun,Peng Huan,Peng DeliangORCID,Wang Jiajun,Liu Shiming,Kong Lingan

Abstract

Context A transgenic variety of soybean (Glycine max (L.) Merr.), H57, has been developed from wild-type variety Jack, with host-induced gene silencing of a chitin synthase gene (CHS) in soybean cyst nematode (SCN, Heterodera glycines Ichinohe), a devastating pathogen in soybean. H57 needs to be characterised for suitability to manage SCN, especially because rhizosphere microbial communities may be sensitive to genetically modified crops. Aims We aimed to evaluate the SCN resistance of H57 at the T7 generation, and analyse the impact on the rhizosphere microbial community of planting H57 into SCN-infected soil. Methods Infection with SCN was assessed at 60 days after planting of H57 and Jack into SCN-infected soil by examining recovered cysts from rhizosphere soil and comparing with an infected bulk soil control. For analysis of rhizosphere microbial communities (bacterial and fungal), 16S and ITS amplicons were identified by high-throughput sequencing, and bioinformatic analysis was used to define operational taxonomic units. Alpha diversity, using five indexes, and relative abundance were determined. Key results Soybean H57 showed significantly enhanced and heritable resistance to SCN compared with Jack. The diversity and richness (abundance) of the bacterial community of H57 and Jack were significantly and similarly increased relative to the bulk soil. The fungal community of H57 had considerably lower abundance than both other treatments, and lower diversity than the bulk soil. The relative abundance of only two bacterial phyla (Acidobacteria and Actinobacteria) and one fungal phylum (Glomeromycota), and three bacterial genera (Candidatus_Solibacter, Candidatus_Udaeobacter and Bryobacter) and one fungal genus (Aspergillus), differed significantly between rhizosphere soils of H57 and Jack. Conclusions Host-induced gene silencing of SCN-CHS substantially and heritably enhanced SCN resistance in soybean, did not significantly alter the rhizosphere bacterial community, but greatly suppressed the abundance of the rhizosphere fungal community, which was likely associated with boosted SCN resistance. Implications This study established a basis for interaction research between soybean with SCN-CHS host-induced gene silencing and the rhizosphere microbial community, and for potentially planting soybean H57 to manage SCN.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3