The Utility of Calculated Proton Affinities in Drug Design: A DFT Study

Author:

Ayine-Tora Daniel Moscoh,Reynisson Jóhannes

Abstract

Computer-aided drug design comprises several predictive tools, which can calculate various properties of the candidates under development. Proton affinity (PA) is related to pKa (the negative log of the acid dissociation constant (Ka)) one of the fundamental physical properties of drug candidates, determining their water solubility and thus their pharmacokinetic profile. The following questions therefore emerged: to what extent are PA predictions useful in drug design, and can they be reliably used to derive pKa values? Using density functional theory (DFT), it was established that for violuric acid, with three ionisation groups, the PAs correlate well with the measured pKas (R2 = 0.990). Furthermore, an excellent correlation within the amiloride compound family was achieved (R2 = 0.922). In order to obtain correlations for larger compound collections (n = 210), division into chemical families was necessary: carboxylic acids (R2 = 0.665), phenols (R2 = 0.871), and nitrogen-containing molecules (R2 = 0.742). These linear relationships were used to predict pKa values of 90 drug molecules with known pKas. A total of 48 % of the calculated values were within 1 logarithmic unit of the experimental number, but mainstream empirically based methods easily outperform this approach. The conclusion can therefore be reached that PA values cannot be reliably used for predicting pKa values globally but are useful within chemical families and in the event where a specific tautomer of a drug needs to be identified.

Publisher

CSIRO Publishing

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3