Impact of short-term exposure to cold night temperatures on early development of cotton (Gossypium hirsutum L.)

Author:

Bange M. P.,Milroy S. P.

Abstract

Regression analysis of field data has indicated that minimum daily temperatures below 11°C delay the development of cotton (Gossypium hirsutum L.) seedlings beyond what would be expected based on the accumulated degree-day sum. In Australian cotton production systems, events where the minimum daily temperature falls below this value are referred to as ‘cold shocks’. The number of cold shocks is used by growers and advisors in assessing retardation of crops in their areas. However, this effect has not been tested explicitly. The aim of this work was to empirically assess effects of cold shock on pre-flower development of cotton plants. Cotton seedlings were grown in controlled-temperature glasshouses. Plants were transferred to cold chambers ranging from 5 to 22°C during the night period for durations from 3 to 10 days. Negative effects were not seen until plants had been exposed to at least 10 nights at 10°C, or for at least 5 nights at 5°C. When differences were generated it did not delay development to first square any more than 4 days, nor was the effect consistent. These differences translated into delays to first flower, but had little effect on plant morphology, or on dry weight measured soon after flowering. In one experiment, a significant reduction in leaf photosynthesis was measured at two times of day on the day after cold shock at 5°C. Improving understanding of the effects of temperature extremes on cotton growth and development will help in developing more functional decision-support tools and field management strategies.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3