Harboured cation/proton antiporters modulate stress response to integrated heat and salt via up-regulating

Author:

Kahraman Nihal,Pehlivan NeclaORCID

Abstract

Recent research has pointed to improved salt tolerance by co-overexpression of Arabidopsis thaliana NHX1 (Na+/H+ antiporter) and SOS1 (Salt Overly Sensitive1). However, functionality under salt stress accompanying heat is less understood in double transgenics. To further advance possible co-operational interactions of AtNHX1 (N) and AtSOS1 (S) under combined stress, modulation of osmolyte, redox, energy, and abscisic acid metabolism genes was analysed. The expression of the target BIP3, KIN1, GOLS1, OHP2, and CYCA3;2 in transgenic Arabidopsis seedlings were significantly regulated towards a dramatic suppression by ionic, osmotic, and heat stresses. AtNHX1 and AtSOS1 co-overexpression (NS) outpaced the single transgenics and control in terms of membrane disorganisation and the electrolyte leakage of the cell damage caused by heat and salt stress in seedlings. While NaCl slightly induced CYCA3;2 in transgenics, combined stress up-regulated KIN1 and GOLS1, not other genes. Single N and S transgenics overexpressing AtNHX1 and AtSOS1 only appeared similar in their growth and development; however, different to WT and NS dual transgenics under heat + salt stress. Seed germination, cotyledon survival, and hypocotyl length were less influenced by combined stress in NS double transgenic lines than in single N and S and wild type. Stress combination caused significant reprogramming of gene expression profiles, mainly towards downregulation, possibly as a trade-off strategy. Analysing phenotypic, cellular, and transcriptional responses regulating growth facets of tolerant transgenic genotypes may support the ongoing efforts to achieve combined salt and heat tolerance.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3