Coordination of 2,2'-Bithiazole. Spectral, Magnetic and Structural Studies of the Iron(II) and Nickel(II) Complexes

Author:

Craig DC,Goodwin HA,Onggo D,Rae AD

Abstract

Iron(II) and nickel(II) complexes of 2,2′bithiazole (2bt) have been prepared. Salts of [Fe(2bt)3]2+ have spectral properties typical of iron(II) diimine systems. Their magnetic and Mossbauer spectral properties show an anomalous temperature-dependence which is associated with a temperature-induced singlet (1A1) ↔ quintet (5T2) transition. The manifestation of the spin transition is complicated by the existence of two modifications of the complex perchlorate. In one of these there is a relatively small fraction of quintet state species in an essentially low-spin lattice. This fraction increases only slightly at elevated temperatures within the range 89-343 K. The other modification is essentially high-spin at high temperatures and low-spin at low temperatures. The quadrupole splitting values for the two high-spin species are quite different, arising from different lattice contributions. The structures of 2bt and the related 4,4′-bithiazole and of [Ni(2bt)3][ClO4]2 have been determined by single-crystal X-ray diffactometry. These afford a comparison of the coordination features of the isomeric bithiazoles. 2,2′-Bithiazole, orthorhombic with space group P bca , Z = 8, α 9.284(1), b 14.564(1), c 10.802(1) Ǻ; 4,4′-Bithiazole, monoclinic with space group P21/c, Z = 2, a 5.528(2), b 6.288(2), c 11.316(4)Ǻ. The nickel complex, orthorhombic with non-centrosymmetric space group Pna21, four molecules per unit cell, a 16.709(3), b 9.511(4), c 17.491(2)Ǻ, has a stacking fault which reduces the intensity of h = 2n+1 data. Pseudosymmetry enables data with h = 2n to be described by a disordered structure in the centrosymmetric space group Pnmn.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3