Tissue-specific changes in remobilisation of fructan in the xerophytic tussock species Festuca novae-zelandiae in response to a water deficit

Author:

Clark Greg T.,Zuther Ellen,Outred Heather A.,McManus Michael T.,Heyer Arnd G.

Abstract

Cellular responses of the native New Zealand grass species Festuca novae-zelandiae (Hack.) Cockayne to a water deficit and re-hydration treatment were investigated. Leaf extension ceased after 28 d of withholding water, while mitotic activity within the intercalary meristem still continued. By 35 d, no evidence of mitotic activity could be detected. At the apical meristem, cell division commenced 24 h post re-watering after 49 d of dry-down and was accompanied by synthesis of storage oligosaccharides of the fructan type. Changes in water-soluble carbohydrates over the course of the water deficit were examined in consecutive leaf segments comprising the leaf base (meristem region), elongation zone, the enclosed and the exposed lamina, as well as basal sheath segments from the two next oldest leaves. In fully hydrated leaf tissue, the fructan pool was mainly composed of the low molecular weight fructans of the inulin and neokestose series with higher concentrations towards the leaf base. Fructan concentrations decreased over the course of the water deficit with the leaf base retaining significantly higher concentrations than any other tissue, until tissue water content fell below 45%. Sucrose content increased in each tissue during the course of the dry-down, and was highest at the leaf base, where a concentration of 200 μmol g DW–1 was measured after 49�d of dry-down.In 1.5 h after re-watering, levels of 1-kestotriose increased relative to the level of sucrose at the leaf base, indicating re-synthesis of fructans from accumulated sucrose. By 24 h post re-watering, the ratio of sucrose to 1-kestotriose declined from six in non-watered plants to two and higher molecular weight fructans became detectable. The negative correlation between fructan and sucrose content, which indicates an inter-conversion depending on tissue water content, suggests that, in this species, fructans serve as a carbohydrate pool, while sucrose stabilises the meristem during extreme water deficit.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3