Simulations of the Waroona fire using the coupled atmosphere–fire model ACCESS-Fire

Author:

Peace MikaORCID,Greenslade Jesse,Ye Hua,Kepert Jeffrey D.

Abstract

The Waroona fire burned 69 000 ha south of Perth in January 2016. There were two fatalities and 170 homes were lost. Two evening ember storms were reported and pyrocumulonimbus (pyroCb) cloud developed on consecutive days. The extreme fire behaviour did not reconcile with the near- surface conditions customarily used to assess fire danger. A case study of the fire (Peace et al. 2017) presented the hypothesis that the evening ember storms resulted from interactions between the above-surface wind fields, local topography and the fire plume. The coupled fire–atmosphere model ACCESS-Fire has been run in order to explore this hypothesis and other aspects of the fire activity, including the pyroCb development. ACCESS-Fire incorporates the numerical weather prediction model ACCESS (Australian Community Climate and Earth System Simulator, described by Puri et al. 2013) and a fire spread component. In these simulations, the Dry Eucalypt Forest Fire (Vesta) fire spread model is used. In this study we first show that the reconstruction of surface fire spread and simulated fire spread are a good match for the first day; second, we show that the model produces deep moist convection as an indicator of pyrocumulonimbus cloud and, third, we show the fire–atmosphere interactions surrounding the ember showers provided an environment conducive to the observed mass spotting. The simulation results demonstrate that ACCESS-Fire is a tool that may be used to further explore the complex processes and potential impacts surrounding pyroCb development and short-distance ember transport.

Publisher

CSIRO Publishing

Subject

Atmospheric Science,Global and Planetary Change,Oceanography

Reference29 articles.

1. Airflow over a two-dimensional escarpment. III: nonhydrostatic flow.;Quarterly Journal of the Royal Meteorological Society,1994

2. A coupled atmosphere–fire model: convective feedback on fire-line dynamics.;Journal of Applied Meteorology,1996

3. Some requirements for simulating wildland fire behavior using insight from coupled weather—wildland fire models.;Fire,2018

4. WRF-Fire: coupled weather–wildland fire modeling with the weather research and forecasting model.;Journal of Applied Meteorology and Climatology,2013

5. Cruz M, Gould J, Alexander M, McCaw L, Matthews S (2015) ‘A guide to rate of fire spread models for Australian vegetation.’ (Australasian Fire and Emergency Service Authorities Council Ltd and Commonwealth Scientific and Industrial Research Organisation)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3