Soil carbon and inferred net primary production in high- and low-intensity grazing systems on the New England Tableland, eastern Australia

Author:

Young Rick,Cowie Annette,Harden Steven,McLeod Ross

Abstract

Management of grazing lands for the accumulation of soil carbon stocks (CS) has been proposed as an effective way to reduce net greenhouse gas emissions from agriculture. However, there are conflicting reports on the effects of grazing management on soil carbon. Most comparisons have involved some combination of no grazing, rotational grazing and set stocking. In the present study we compared two adjacent commercial grazing systems, distinguished on the basis of inputs and livestock productivity, located on New England basaltic landscapes experiencing a cool temperate climate. The high-intensity (H) system sustains an average stocking rate of 18 dry sheep equivalents (dse) ha–1, with a turnoff rate of 9dseha–1year–1, with high levels of investment in assets, management and fertiliser. The low-intensity (L) system, with less intensive management and half the fertiliser of the H system, sustains a stocking rate of 9dseha–1, with a turnoff rate of 3dseha–1year–1, which is slightly higher than the regional average. Pasture biomass production was inferred (back-calculated) from stocking rates and animal feed requirements using published data. From the H and L systems, seven paired landscapes from valley floor to upper hillslopes and plateaux were selected. The seventh included a forest reserve. One hundred and eighty-six undisturbed soil cores (0–0.5m depth) were assessed for bulk density, total C and N, particulate C and a range of plant nutrients. There were few differences in CS, soil pH and nutrient levels between H and L grazing systems. Average CS (0–0.3m) in pasture soils was 103Mgha–1, but was higher in the forest soil at 190Mgha–1. Regression of CS versus soil mass was a satisfactory method of dealing with the bias introduced by the higher soil bulk density in perennial pasture systems compared with the forest. The similarity of CS in H and L pasture soils was despite inferred net primary production being 1.9–3.6MgCha–1year–1 greater in H than L systems, implying higher rates of C turnover in the former. The global warming potential of the inferred annual emissions of CH4 and N2O in the H and L systems was equivalent to approximately 19% and 13% of the cycling atmospheric–plant CO2 carbon respectively.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3