Efficacy of priming wheat (Triticum aestivum) seeds with a benzothiazine derivative to improve drought stress tolerance

Author:

AL-Huqail Arwa AbdulkreemORCID,Saleem Muhammad HamzahORCID,Ali BaberORCID,Azeem Muhammad,Mumtaz Sahar,Yasin Ghulam,Marc Romina Alina,Ali ShafaqatORCID

Abstract

We evaluated the effects of different concentrations (0.05 and 0.15 mM) of a benzothiazine (BTh) derivative on wheat (Triticum aestivum L.) in normal (100% field water capacity, FWC) and drought (60% FWC) conditions. Various morphological and physiological characteristics, and the uptake of osmo-protectants and nutrients were measured under the two FWC conditions. Results show that the drought conditions significantly reduced plant growth, affected plant composition, reduced the concentrations of photosynthetic pigments and affected gaseous exchange attributes, stomatal behaviour, and uptake fluxes of essential nutrients, while increasing the contents of different osmo-protectants and enzymatic and non-enzymatic antioxidants to decrease the production of reactive oxygen species (ROS) within the cells/tissues. However, seed priming with BTh reduced water stress conditions by increasing plant growth and biomass, photosynthetic pigments, stomatal behaviour, different gaseous exchange attributes, and uptake fluxes of essential nutrients compared with unprimed plants. In addition, the plant has a strong antioxidant defense system, which further increased its activities under BTh derivative treatments, to scavenge ROS production and maintain cell turgor under water stress conditions. In conclusion, drought stress-induced oxidative stress and altered the growth of T. aestivum, whereas seed priming increased plant growth and antioxidant production by improving the plant tolerance to drought. We suggest that seed priming with a BTh derivative as an effective priming technique in T. aestivum for reducing drought stress tends to benefit a grower in terms of better growth to fulfil the market demand for food cereals.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3