Selective transport capacity for K+ over Na+ is linked to the expression levels of PtSOS1 in halophyte Puccinellia tenuiflora

Author:

Guo Qiang,Wang Pei,Ma Qing,Zhang Jin-Lin,Bao Ai-Ke,Wang Suo-Min

Abstract

The plasma membrane Na+/H+ antiporter (SOS1) was shown to be a Na+ efflux protein and also involved in K+ uptake and transport. PtSOS1 was characterised from Puccinellia tenuiflora (Griseb.) Scribn. et Merr., a monocotyledonous halophyte that has a high selectivity for K+ over Na+ by roots under salt stress. To assess the contribution of PtSOS1 to the selectivity for K+ over Na+, the expression levels of PtSOS1 and Na+, K+ accumulations in P. tenuiflora exposed to different concentrations of NaCl, KCl or NaCl plus KCl were analysed. Results showed that the expression levels of PtSOS1 in roots increased significantly with the increase of external NaCl (25–150 mM), accompanied by an increase of selective transport (ST) capacity for K+ over Na+ by roots. Transcription levels of PtSOS1 in roots and ST values increased under 0.1–1 mM KCl, then declined sharply under 5–10 mM KCl. Under 150 mM NaCl, PtSOS1 expression levels in roots and ST values at 0.1 mM KCl was significantly lower than that at 5 mM KCl with the prolonging of treatment time. A significant positive correlation was found between root PtSOS1 expression levels and ST values under various concentrations of NaCl, KCl or 150 mM NaCl plus 0.1 or 5 mM KCl treatments. Therefore, it is proposed that PtSOS1 is the major component of selective transport capacity for K+ over Na+ and hence, salt tolerance of P. tenuiflora. Finally, we hypothesise a function model of SOS1 in regulating K+ and Na+ transport system in the membrane of xylem parenchyma cells by sustaining the membrane integrity; it also appears that this model could reasonably explain the phenomenon of Na+ retrieval from the xylem when plants are exposed to severe salt stress.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3