Presence of histone H3 acetylated at lysine 9 in male germ cells and its distribution pattern in the genome of human spermatozoa

Author:

Steilmann C.,Paradowska A.,Bartkuhn M.,Vieweg M.,Schuppe H. -C.,Bergmann M.,Kliesch S.,Weidner W.,Steger K.

Abstract

During spermatogenesis, approximately 85% of histones are replaced by protamines. The remaining histones have been proposed to carry essential marks for the establishment of epigenetic information in the offspring. The aim of the present study was to analyse the expression pattern of histone H3 acetylated at lysine 9 (H3K9ac) during normal and impaired spermatogenesis and the binding pattern of H3K9ac to selected genes within ejaculates. Testicular biopsies, as well as semen samples, were used for immunohistochemistry. Chromatin immunoprecipitation was performed with ejaculated sperm chromatin. HeLa cells and prostate tissue served as controls. Binding of selected genes was evaluated by semiquantitative and real-time polymerase chain reaction. Immunohistochemistry of H3K9ac demonstrated positive signals in spermatogonia, spermatocytes, elongating spermatids and ejaculated spermatozoa of fertile and infertile men. H3K9ac was associated with gene promoters (CRAT, G6PD, MCF2L), exons (SOX2, GAPDH, STK11IP, FLNA, PLXNA3, SH3GLB2, CTSD) and intergenic regions (TH) in fertile men and revealed shifts of the distribution pattern in ejaculated spermatozoa of infertile men. In conclusion, H3K9ac is present in male germ cells and may play a role during the development of human spermatozoa. In addition, H3K9ac is associated with specific regions of the sperm genome defining an epigenetic code that may influence gene expression directly after fertilisation.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3