Author:
Grose Michael R.,Black Mitchell T.,Wang Guomin,King Andrew D.,Hope Pandora,Karoly David J.
Abstract
Tasmania saw a warm and very dry spring and summer in 2015–16, including a record dry October, which had significant, wide-ranging impacts. A previous study using two probabilistic event-attribution techniques found a small but statistically significant increase in the likelihood of the record dry October due to anthropogenic influence. Given the human signal was less clear amid natural variability for rainfall compared to temperature extremes, here we provided further evidence and context for this finding. An additional attribution method supported the October rainfall finding, and the median attributable risk to human influence in the three methods was ~25%, 48% and 75%. The results suggested that human influence on rainfall was partly through increased sea level pressure in the mid-latitudes associated with fewer rainbearing systems, a circulation driver that was consistent with recent trends that have been attributed to human influence. Dry conditions were also driven by a positive Indian Ocean Dipole and El Niño at the time, but this study could not reliably estimate the effect of human influence on these phenomena, as each model gave a different estimate of the ocean warming pattern. Along with rainfall, attribution modelling showed a role for human influence in higher temperature and evaporation through October 2015, as well as a high drought index throughout spring. Confidence in the attribution of a human signal on this extreme dry event increased as multiple attribution methods agreed, a plausible atmospheric circulation driver was identified, and temperature and evaporation also showed an anthropogenic signal.
Subject
Atmospheric Science,Global and Planetary Change,Oceanography
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献