An Initialized Attribution Method for Extreme Events on Subseasonal to Seasonal Time Scales

Author:

Wang Guomin1,Hope Pandora1,Lim Eun-Pa1,Hendon Harry H.1,Arblaster Julie M234

Affiliation:

1. a Bureau of Meteorology, Melbourne, Victoria, Australia

2. b ARC Centre of Excellence for Climate Extremes, Monash University, Clayton, Victoria, Australia

3. c School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia

4. d National Center for Atmospheric Research, Boulder, Colorado

Abstract

AbstractWhen record-breaking climate and weather extremes occur, decision-makers and planners want to know whether they are random natural events with historical levels of reoccurrence or are reflective of an altered frequency or intensity as a result of climate change. This paper describes a method to attribute extreme weather and climate events to observed increases in atmospheric CO2 using an initialized subseasonal to seasonal coupled global climate prediction system. Application of this method provides quantitative estimates of the contribution arising from increases in the level of atmospheric CO2 to individual weather and climate extreme events. Using a coupled subseasonal to seasonal forecast system differs from other methods because it has the merit of being initialized with the observed conditions and subsequently reproducing the observed events and their mechanisms. This can aid understanding when the reforecasts with and without enhanced CO2 are compared and communicated to a general audience. Atmosphere–ocean interactions are accounted for. To illustrate the method, we attribute the record Australian heat event of October 2015. We find that about half of the October 2015 Australia-wide temperature anomaly is due to the increase in atmospheric CO2 since 1960. This method has the potential to provide attribution statements for forecast events within an outlook period (i.e., before they occur). This will allow for informed messaging to be available as required when an extreme event occurs, which is of particular use to weather and climate services.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3