Exchangeable cation effects on hot water extractable carbon and nitrogen in agricultural soils

Author:

Curtin DenisORCID,Qiu Weiwen,Peterson Michelle E.,Beare Mike H.ORCID,Anderson Craig R.,Chantigny Martin H.

Abstract

Hot water is believed to extract bio-available soil organic matter (SOM), including organic compounds from the biomass of soil microbes. The role of soil physico-chemical factors in relation to extractability of SOM in hot water is not well understood. We evaluated the influence of exchangeable sodium (Na) on the quantity and quality of organic matter extracted in hot water from soils with a range of total and extractable C (total C 19–60 g kg–1; hot water extractable C (HWC) 659–3292 mg kg–1). The soils were pre-treated with different rates of Na (0–156 cmolc kg–1, as NaCl) to establish a range of exchangeable Na percentages (ESP), and then extracted with hot water (80°C) for 16 h. Hot water extractable C increased linearly as ESP increased, but the rate of increase differed between soils (the increase in HWC per unit increase in ESP ranged within 19–71 mg kg–1). At ESP 15, a threshold used to separate sodic and non-sodic soils, HWC was 30–60% greater than that measured without added Na. Ultraviolet absorbance (260 nm) data indicated that aromatic organic matter was preferentially released following Na pre-treatment. The proportion of HWC in phenolic form was generally little affected by Na treatment but there was a consistent increase in protein in response to Na (hot water extractable organic N in protein form increased from an average of 5.5 ± 2.2% without added Na to 11.0 ± 3.6% at the highest Na rate). The Na-induced increases in UV absorbance may be largely attributable to release of proteins containing aromatic amino acids (tryptophan and tyrosine). Our results suggest that organic matter desorbed from mineral surfaces may be an important contributor to hot water extractable C and N, and factors that affect the adsorption–desorption process may significantly influence organic matter extractability in hot water.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3