Phosphate sorption by soil in relation to exchangeable cationcComposition and pH

Author:

Curtin D,Syers JK,Bolan NS

Abstract

The influence of exchangeable cation composition on the sorption of phosphate (P) was studied using samples of an acid, clay loam subsoil which had been saturated with Ca2+ or Na+. The Na-soil always sorbed less P than the Ca-soil but the difference between the two systems was strongly pH-dependent. Sorption by the Na-soil declined rapidly as pH increased, to the extent that at pH 7.6 it was only 22% of that sorbed at pH 4.1. Although sorption by the Casoil also decreased with an initial pH increase, it increased again once pH exceeded approximately 5. The difference in sorption between the Ca, and Na-soils was only about 20% at low pH but it increased considerably above pH 5. At the highest comparable pH value (6.7), the Ca-soil sorbed almost 4 times as much P as the Na-soil. The observed cation-induced differences in P sorption by this soil cannot be explained simply by the formation of insoluble Ca-P compounds or surface Ca-P complexes in the Ca-saturated samples. A more plausible interpretation appears to derive from the effect of cation saturation on electrostatic potential. A model of P sorption which incorporates electrostatic potential effects indicated that the pH-dependence of the cation effect is likely to be due to a more rapid decrease in potential in the Na- than in the Casoil as pH is increased. However, in the absence of any measured values for potential, it is not possible to apply this model in a general way.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3