Abstract
Low availability of phosphorus (P) is a key limiting factor for the growth of many crops. Selenium (Se) is a nutrient for humans that is acquired predominantly from plants. Localised P and Se supply may affect P- and Se-uptake efficiency. Our aim was to examine the mechanisms of alfalfa (Medicago sativa L.) to acquire P and Se when the elements are heterogeneously or homogeneously distributed in soil, and how P and Se supply affect plant growth and uptake of P and Se. We conducted a split-root experiment growing alfalfa in a loess soil with two distribution patterns (i.e. heterogeneous and homogeneous) of P and Se. The application rates of P (KH2PO4) and Se (Na2SeO3) were 0 and 20mgPkg−1, and 0 and 1mgSekg−1, respectively. Our results showed that plants absorbed more Se when both P and Se were supplied homogeneously than when supplied heterogeneously. Supplying Se had a positive effect on plant P content. Localised P supply resulted in the exudation of more carboxylates by roots than homogeneous P supply did. Soil microbial biomass P was significantly greater when P was supplied homogeneously. Shoot-to-root translocation of Se had a positive effect on P-uptake efficiency. These results indicated that, compared with homogeneous P supply, localised P supply promoted P and Se uptake by increasing the amount of rhizosheath carboxylates and weakening the competition between roots and microbes. Translocation of Se within plant organs was promoted by the application of P, thus enhancing the P-uptake efficiency of alfalfa.
Subject
Plant Science,Agronomy and Crop Science