δ13C of organic matter transported from the leaves to the roots in Eucalyptus delegatensis: short-term variations and relation to respired CO2

Author:

Gessler Arthur,Keitel Claudia,Kodama Naomi,Weston Christopher,Winters Anthony J.,Keith Heather,Grice Kliti,Leuning Ray,Farquhar Graham D.

Abstract

Post-photosynthetic carbon isotope fractionation might alter the isotopic signal imprinted on organic matter (OM) during primary carbon fixation by Rubisco. To characterise the influence of post-photosynthetic processes, we investigated the effect of starch storage and remobilisation on the stable carbon isotope signature (δ13C) of different carbon pools in the Eucalyptus delegatensis R. T. Baker leaf and the potential carbon isotope fractionation associated with phloem transport and respiration. Twig phloem exudate and leaf water-soluble OM showed diel variations in δ13C of up to 2.5 and 2‰, respectively, with 13C enrichment during the night and depletion during the day. Damped diel variation was also evident in bulk lipids of the leaf and in the leaf wax fraction. δ13C of nocturnal phloem exudate OM corresponded with the δ13C of carbon released from starch. There was no change in δ13C of phloem carbon along the trunk. CO2 emitted from trunks and roots was 13C enriched compared with the potential organic substrate, and depleted compared with soil-emitted CO2. The results are consistent with transitory starch accumulation and remobilisation governing the diel rhythm of δ13C in phloem-transported OM and fragmentation fractionation occurring during respiration. When using δ13C of OM or CO2 for assessing ecosystem processes or plant reactions towards environmental constraints, post-photosynthetic discrimination should be considered.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3