Sources of carbon supporting the fast growth of developing immature moso bamboo (Phyllostachys edulis) culms: inference from carbon isotopes and anatomy

Author:

Wang Shitephen1ORCID,Epron Daniel1ORCID,Kobayashi Keito2ORCID,Takanashi Satoru2ORCID,Dannoura Masako1ORCID

Affiliation:

1. Graduate School of Agriculture, Kyoto University , Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 , Japan

2. Kansai Research Centre, Forestry and Forest Products Research Institute , 68 Momoyamacho Nagaikyutaro, Fushimi-ku, Kyoto 612-0855 , Japan

Abstract

Abstract Phyllostachys edulis is a spectacularly fast-growing species that completes its height growth within 2 months after the shoot emerges without producing leaves (fast-growing period, FGP). This phase was considered heterotrophic, with the carbon necessary for the growth being transferred from the mature culms via the rhizomes, although previous studies observed key enzymes and anatomical features related to C4-carbon fixation in developing culms. We tested whether C4-photosynthesis or dark-CO2 fixation through anaplerotic reactions significantly contributes to the FGP, resulting in differences in the natural abundance of δ13C in bulk organic matter and organic compounds. Further, pulse-13CO2-labelling was performed on developing culms, either from the surface or from the internal hollow, to ascertain whether significant CO2 fixation occurs in developing culms. δ13C of young shoots and developing culms were higher (−26.3 to −26.9 ‰) compared to all organs of mature bamboos (−28.4 to −30.1 ‰). Developing culms contained chlorophylls, most observed in the skin tissues. After pulse-13CO2-labelling, the polar fraction extracted from the skin tissues was slightly enriched in 13C, and only a weak 13C enrichment was observed in inner tissues. Main carbon source sustaining the FGP was not assimilated by the developing culm, while a limited anaplerotic fixation of respired CO2 cannot be excluded and is more likely than C4-photosynthetic carbon fixation.

Funder

JSPS KAKENHI

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3