ACCESS-CM2-Chem: evaluation of southern hemisphere ozone and its effect on the Southern Annular Mode

Author:

Dennison FraserORCID,Woodhouse Matthew T.ORCID

Abstract

Chemistry–climate models are important tools for forecasting the evolution of climate. Of particular importance is the simulation of Antarctic ozone depletion due to its effect on the Southern Annular Mode (SAM). In this paper we evaluate the chemistry–climate model ACCESS-CM2-Chem. We find the simulation of stratospheric ozone by ACCESS-CM2-Chem to be significantly improved relative to its predecessor, and as good as the best of the contemporary chemistry–climate models – the ensemble of which displays considerable variation. We also find that the trend in summertime SAM is simulated well by ACCESS-CM2-Chem compared to the ERA5 reanalysis. Further, we show that this trend is more sensitive to changes in ozone depletion forcing in ACCESS-CM2-Chem than the equivalent model with prescribed ozone. However, a downside of the interactive chemistry of ACCESS-CM2-Chem, relative to the prescribed chemistry version, is an increase in the bias towards later vortex break-ups. Many recent studies have identified the important role of feedbacks between interactive ozone chemistry and climate. This phenomenon will be crucial to understand future projections where the recovery of stratospheric ozone will interact with increasing greenhouse gas driven warming. Based on the performance demonstrated here, ACCESS-CM2-Chem is a promising model with which to further this line of research, although the delay in the vortex break-up induced by the interactive chemistry is an issue that requires further work.

Publisher

CSIRO Publishing

Subject

Atmospheric Science,Global and Planetary Change,Oceanography

Reference66 articles.

1. Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1.;Geoscientific Model Development,2020

2. Sensitivity of ozone and temperature to vertical resolution in a gcm with coupled stratospheric chemistry.;Quarterly Journal of the Royal Meteorological Society,1997

3. Australian Antarctic Division and Australian Bureau of Meteorology (2021) Davis, Macquarie Island and Melbourne station OzoneSonde data. (World Meteorological Organization–Global Atmosphere Watch Program, WMO-GAW; and World Ozone and Ultraviolet Radiation Data Centre, WOUDC) [Data] Available at

4. A pause in Southern Hemisphere circulation trends due to the Montreal Protocol.;Nature,2020

5. Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model.;Journal of Southern Hemisphere Earth Systems Science,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3