Research note: Can decreased transpiration limit plant nitrogen acquisition in elevated CO2?

Author:

McDonald Evan P.,Erickson John E.,Kruger Eric L.

Abstract

N acquisition often lags behind accelerated C gain in plants exposed to CO2-enriched atmospheres. To help resolve the causes of this lag, we considered its possible link with stomatal closure, a common first-order response to elevated CO2 that can decrease transpiration. Specifically, we tested the hypothesis that declines in transpiration, and hence mass flow of soil solution, can decrease delivery of mobile N to the root and thereby limit plant N acquisition. We altered transpiration by manipulating relative humidity (RH) and atmospheric [CO2]. During a 7-d period, we grew potted cottonwood (Populus deltoides Bartr.) trees in humidified (76% RH) and non-humidified (43% RH) glasshouses ventilated with either CO2-enriched or non-enriched air (~1000 vs ~380�μmol mol–1). We monitored effects of elevated humidity and/or CO2 on stomatal conductance, whole-plant transpiration, plant biomass gain, and N accumulation. To facilitate the latter, NO3– enriched in 15N (5 atom%) was added to all pots at the outset of the experiment. Transpiration and 15N accumulation decreased when either CO2 or humidity were elevated. The disparity between N accumulation and accelerated C gain in elevated CO2 led to a 19% decrease in shoot N concentration relative to ambient CO2. Across all treatments, 15N gain was positively correlated with root mass (P<0.0001), and a significant portion of the remaining variation (44%) was positively related to transpiration per unit root mass. At a given humidity, transpiration per unit leaf area was positively related to stomatal conductance. Thus, declines in plant N concentration and/or content under CO2 enrichment may be attributable in part to associated decreases in stomatal conductance and transpiration.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3