Effects of Warming and Elevated CO2 on Stomatal Conductance and Chlorophyll Fluorescence of C3 and C4 Coastal Wetland Species

Author:

Sendall Kerrie M.ORCID,Muñoz Cyd M. Meléndez,Ritter Angela D.,Rich Roy L.,Noyce Genevieve L.,Megonigal J. Patrick

Abstract

AbstractCoastal wetland communities provide valuable ecosystem services such as erosion prevention, soil accretion, and essential habitat for coastal wildlife, but are some of the most vulnerable to the threats of climate change. This work investigates the combined effects of two climate stressors, elevated temperature (ambient, + 1.7 °C, + 3.4 °C, and 5.1 °C) and elevated CO2 (eCO2), on leaf physiological traits of dominant salt marsh plant species. The research took place at the Salt Marsh Accretion Response to Temperature eXperiment (SMARTX) at the Smithsonian Environmental Research Center, which includes two plant communities: a C3 sedge community and a C4 grass community. Here we present data collected over five years on rates of stomatal conductance (gs), quantum efficiency of PSII photochemistry (Fv/Fm), and rates of electron transport (ETRmax). We found that both warming and eCO2 caused declines in all traits, but the warming effects were greater for the C3 sedge. This species showed a strong negative stomatal response to warming in 2017 and 2018 (28% and 17% reduction, respectively in + 5.1 °C). However, in later years the negative response to warming was dampened to < 7%, indicating that S. americanus was able to partially acclimate to the warming over time. In 2022, we found that sedges growing in the combined + 5.1 °C eCO2 plots exhibited more significant declines in gs, Fv/Fm, and ETRmax than in either treatment individually. These results are important for predicting future trends in growth of wetland species, which serve as a large carbon sink that may help mitigate the effects of climate change.

Funder

Biological and Environmental Research

Georgia Sea Grant, University of Georgia

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3