Photoperiodic variations induce shifts in the leaf metabolic profile of Chrysanthemum morifolium

Author:

Kjaer Katrine Heinsvig,Clausen Morten Rahr,Sundekilde Ulrik Kræmer,Petersen Bent Ole,Bertram Hanne Christine,Ottosen Carl-Otto

Abstract

Plants have a high ability to adjust their metabolism, growth and development to changes in the light environment and to photoperiodic variation, but the current knowledge on how changes in metabolite contents are associated with growth and development is limited. We investigated the effect of three different photoperiodic treatments with similar daily light integral (DLI) on the growth responses and diurnal patterns in detected leaf metabolites in the short day plant Chrysanthemum × morifolium Ramat. Treatments were long day (LD, 18 h light/6 h dark), short day (SD, 12 h light/12 h dark) and short day with irregular night interruptions (NI-SD,12 h light/12 h dark, applied in a weekly pattern, shifting from day-to-day). Photoperiodic variation resulted in changes in the phenotypic development of the plants. The plants grown in the SD treatment started to initiate reproductive development of the meristems and a decrease in leaf expansion resulted in lower leaf area of expanding leaves. In contrast, plants in the NI-SD and LD treatments did not show reproductive development at any stage and final leaf area of the expanding leaves was intermediate for the NI-SD plants and largest for the LD plants. Photoperiodic variation also resulted in changes in the leaf metabolic profile for most of the analysed metabolites, but only carbohydrates, citrate and some amino acids displayed a shift in their diurnal pattern. Further, our results illustrated that short days (SD) increased the diurnal turnover of 1-kestose after 2 weeks, and decreased the overall contents of leaf hexoses after 3 weeks. In the two other treatments a diurnal turnover of 1-kestose was not stimulated before after 3 weeks, and hexoses together with the hexose : sucrose ratio steadily increased during the experiment. Our results enlighten the plasticity of leaf growth and metabolism to environmental changes, and demonstrate that diurnally regulated metabolites not always respond to photoperiodic variation.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3