Use of putative QTLs and structural genes in marker assisted selection for diastatic power in malting barley (Hordeum vulgare L.)

Author:

Coventry S. J.,Collins H. M.,Barr A. R.,Jefferies S. P.,Chalmers K. J.,Logue S. J.,Langridge P.

Abstract

The usefulness of marker assisted selection (MAS) to improve diastatic power was demonstrated by selecting quantitative trait loci (QTLs) and structural gene alleles involved in enhanced diastatic power and activity of its component hydrolytic enzymes from Alexis, Amagi Nijo, Harrington, Haruna Nijo, and Sloop. Six unmapped breeders' populations involving these donor sources of malting quality were used for MAS. For each population, individual lines were pooled into classes separated on the basis of either the presence or absence of malting quality parent marker alleles at each of 9 identified loci (QTLs or structural genes). Diastatic power, β-amylase, and α-amylase activities were determined for each line, and used to compare alternative marker allele class means. Lines carrying malting parent marker alleles at a chromosome 5H locus abg463 were associated with 21–44% higher α-amylase activity levels, depending on the cross. The malting parent alleles at the chromosome 4H Bmy1 locus were associated with increased diastatic power and β-amylase activity. A simple PCR marker detecting the Bmy1 locus was found to be effective in screening for improved diastatic power, β-amylase activity, and thermostability. Lines carrying malting parent alleles at the chromosome 2H Bmy2 locus produced differences in diastatic power and β-amylase activity that, after adjusting for the correlated effect of malt protein, became non-significant. The Alexis allele of the chromosome 1H EBmac501 locus was associated with significant differences in all traits for a population carrying this source. The implication of these results to the improvement of diastatic power through MAS is discussed.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3