Effect of variability in soil properties plus model complexity on predicting topsoil water content and nitrous oxide emissions

Author:

Vogeler IrisORCID,Cichota Rogerio

Abstract

Despite the importance of soil physical properties on water infiltration and redistribution, little is known about the effect of variability in soil properties and its consequent effect on contaminant loss pathways. To investigate the effects of uncertainty and heterogeneity in measured soil physical parameters on the simulated movement of water and the prediction of nitrous oxide (N2O) emissions, we set up the Agricultural Production Systems sIMulator (APSIM) for different soil types in three different regions of New Zealand: the Te Kowhai silt loam and the Horotiu silt loam in the Waikato region, and the Templeton silt loam in the Canterbury region, and the Otokia silt loam and the Wingatui silt loam in the Otago region. For each of the soil types, various measured soil profile descriptions, as well as those from a national soils database (S-map) were used when available. In addition, three different soil water models in APSIM with different complexities (SWIM2, SWIM3, and SoilWat) were evaluated. Model outputs were compared with temporal soil water content measurements within the top 75mm at the various experimental sites. Results show that the profile description, as well as the soil water model used affected the prediction accuracy of soil water content. The smallest difference between soil profile descriptions was found for the Templeton soil series, where the model efficiency (NSE) was positive for all soil profile descriptions, and the RMSE ranged from 0.055 to 0.069m3/m3. The greatest difference was found for the Te Kowhai soil, where only one of the descriptions showed a positive NSE, and the other two profile descriptions overestimated measured topsoil water contents. Furthermore, it was shown that the soil profile description highly affects N2O emissions from urinary N deposited during animal grazing. However, the relative difference between the emissions was not always related to the accuracy of the measured soil water content, with soil organic carbon content also affecting emissions.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3