Utilising Airborne Multispectral Videography to Predict Habitat Complexity in Eucalypt Forests for Wildlife Management *Further information about this research can be found on the World Wide Web at http://www.ffp.csiro.au/nfm/mdq/

Author:

Coops N. C.,Catling P. C.

Abstract

Airborne videographic remote sensing is a relatively recent technology thatcan provide inexpensive and high-spatial-resolution imagery for forestmanagement. This paper presents a methodology that allows videographic data tobe modelled to predict habitat complexity in eucalypt forests.Within the eucalypt forests of south-eastern New South Wales, plots werelocated on the imagery, and the local variance of the videography within eachplot was computed on the assumption that changes in local variance provided anindication of forest structure, and thus the habitat complexity of the site.The near- infrared (NIR) channel demonstrated the most variation, as thatchannel provided an indication of photosynthetic activity and, as a result,the variation between canopy, understorey, ground cover, soil and shadowprovided a highly variable response in the video imagery. Habitat-complexityscores were used to record forest structure, and the relationship between theNIR variance and field habitat-complexity scores was highly significant(P < 0·001)(r2 = 0·75;n = 29). From this relationship, maps of thehabitat-complexity scores were predicted from the videography at 2-m spatialresolution. The model was extrapolated across a 1 1 km subset of the videodata and field verification showed that the predicted scores correspondedclosely with the field scores.Studies have demonstrated the relationship between habitat-complexity scoresand the distribution and abundance of different mammalian fauna. This methodallows predictions of habitat-complexity scores to be spatially extrapolatedand used to stratify the landscape into regions for both the modelling offaunal habitat and to predict the composition, distribution and abundance ofsome faunal groups across the landscape. Ultimately, the management of foresthabitats for wildlife will depend on the availability of accurate maps of thediversity and extent of habitats over large areas and/or in difficult terrain.

Publisher

CSIRO Publishing

Subject

Management, Monitoring, Policy and Law,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3