Development of a forest structural complexity index based on multispectral airborne remote sensing and topographic dataThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time.

Author:

Pasher Jon1,King Douglas J.1

Affiliation:

1. Department of Geography and Environmental Studies, Geomatics and Landscape Ecology Laboratory, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.

Abstract

This paper presents development of a multivariate forest structural complexity index based on relationships between field-based structural variables and geospatial data. Remote sensing has been widely used to model individual forest structural attributes at many scales. As opposed to, or in addition to, individual structural parameters such as leaf area index or tree height, overall structural complexity information can enhance forest inventories and provide a variety of information to forest managers, including identifying damage and disturbance as well as indicators of habitat or biodiversity. In this study, a multivariate modelling technique, redundancy analysis, was implemented to derive a model incorporating both horizontal and vertical structural attributes as predicted by an ensemble of high-resolution multispectral airborne imagery and topographic variables. The first redundancy analysis axis of the final model explained 35% of the total variance of the field variables and was used as the complexity index. With a root mean squared error of 19.9%, the model was capable of differentiating four to five relative levels of complexity. This paper presents the forest ecological and modelling aspects of the research. A related paper presents the remote sensing aspects, including application of the model to map predicted structural complexity, map validation, and testing of the method at multiple scales.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3