Evaluation study for phosphorus mobilisation-release behaviour on different marine sediments: focus on phosphate sorption characteristics

Author:

Cao XiaoyanORCID,Wang He,Lu Min,Ge Chengfeng,Zhou Limin,Yang GuipengORCID

Abstract

Environmental contextPhosphorus is a key nutrient element associated with eutrophication in aquatic ecosystems. We studied phosphate sorption processes, which play a key role in phosphorus cycling, in sediments collected from 23 sites including estuary, coastal sea and aquaculture areas in China. The results show the influence of sediment type on phosphorus buffering capacity and allow better interpretation of phosphorus migration in aquatic ecosystems. AbstractPhosphorus is well known as an important nutrient element associated with eutrophication in the marine ecosystem, and its sorption on sediments plays a key role in its immobilisation in the bio-geochemical cycle. In this paper, the sorption behaviour of phosphorus onto sediments collected from 23 different sites in estuary, coastal sea and aquaculture areas of China was studied. The main aim is to determine the phosphorus sorption characteristics of these sediments thereby assessing their phosphorus buffering capacities. Both kinetic and equilibrium isotherms of the sorption and desorption of phosphorus were assessed. The resultant sorption and desorption kinetic curves fit well to a two-compartment first-order equation. The equilibration time was considered as 48h. The isotherms agreed well with the Freundlich and Langmuir equations. The hysteresis coefficient values showed an obvious sorption-desorption hysteresis. Decreasing salinity was favourable for the sorption ability in the range from 30 to 3. The mean values of the phosphorus sorption-desorption equilibrium concentration and the maximum phosphorus sorption capacity were 0.098mgL−1 and 0.086mgg−1 for sediments in the Changjiang Estuary and East China Sea shelf, and 0.138mgL−1 and 0.067mgg−1 for the sediments in the aquaculture area. The fractions of clay, calcite and organic matter influenced the sorption and retention abilities and the effects were different for sediments obtained from different origins.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3