Arsinothricin, a novel organoarsenic species produced by a rice rhizosphere bacterium

Author:

Kuramata Masato,Sakakibara Futa,Kataoka Ryota,Yamazaki Kenichi,Baba Koji,Ishizaka Masumi,Hiradate Syuntaro,Kamo Tsunashi,Ishikawa Satoru

Abstract

Environmental contextRice is a major human dietary source of arsenic. We identified a novel organoarsenic species, arsinothricin, produced by a bacterium in the rice rhizosphere. This result suggests diverse biochemical dynamics and microbial biodiversity of arsenic metabolism in the rice rhizosphere. AbstractMethylated arsenic compounds in rice grains originate from the action of soil bacteria in the rice rhizosphere. Here, we investigated the chemical structures of arsenic compounds produced by a bacterium, Burkholderia gladioli strain GSRB05, in the rice rhizosphere. When cultured in liquid R2A medium containing arsenite (AsIII), strain GSRB05 produced two unknown novel arsenic compounds that were later identified as arsinothricin (AST, 2-amino-4-(hydroxymethylarsinoyl)butanoic acid), an arsenic mimetic of the herbicide phosphinothricin, and a probable hydroxyl precursor of AST, termed AST-OH (2-amino-4-(dihydroxyarsonoyl)butanoic acid). The chemical structure of AST was determined by means of liquid chromatography–high-resolution tandem mass spectrometry and NMR analyses, whereas that of AST-OH was estimated by means of ultra-high-performance liquid chromatography–tandem mass spectrometry. Time-dependent AsIII transformation by strain GSRB05 showed that AST was produced after AST-OH. Compared with AsIII, AST showed higher absorption by, and was more toxic to, Escherichia coli DH5α cells in M9 minimal medium, which lacks amino acids. These findings have implications for the environmental transfer of arsenic, and human health consequences in terms of our dietary burden of arsenic.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3