Fire and geodiversity

Author:

Hoyland Ruby O.ORCID,McHenry Melinda T.ORCID,Foster Erin A.ORCID

Abstract

Geodiversity elements contribute significantly to local and global hydrological, biogeochemical and ecosystem services and as such, fire is a potentially disruptive force with long-term implications. from limiting karstic speleothems formation, to compounding impacts of peat-fire-erosion cycles. Geodiversity elements additionally possess important cultural, aesthetic, and environmental values, including the support of ecosystem services. Hence, assessments of potential fire damage should consider implications for land users, society, and culture, alongside the geomorphic impacts on geodiversity elements. With a view to providing a concise set of descriptors of the response of geodiversity elements to fire, we qualify and in places, quantify, how fire may degrade geosystem function. Where possible, we highlight the influence of fire intensity and frequency gradients, and cumulative fire, in the deterioration of geodiversity values. Geoconservation is integral to protected areas with implications from fire effected geodiversity functions and values presenting issues for management, with potential consequences extending through to delisting, degazetting, and resizing of protected areas. Future research in reserve systems should concentrate on understanding the synergistic and compounding effects of fire on the geophysical landscape.

Publisher

CSIRO Publishing

Reference149 articles.

1. Post-wildfire rosion in mountainous terrain leads to rapid and major redistribution of soil organic carbon.;Frontiers in Earth Science,2017

2. Coral reef death during the 1997 Indian Ocean dipole linked to Indonesian wildfires.;Science,2003

3. Mega-fires, tipping points and ecosystem services: managing forests and woodlands in an uncertain future.;Forest Ecology and Management,2013

4. A review of the effects of forest fire on soil properties.;Journal of Forestry Research,2022

5. Allam L (2020) Grave fears held for thousands of rock art sites after bushfires lay bare irrevocable damage. , 2 February. Available at [verified 24 November 2023]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3