Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops

Author:

Hu PengchengORCID,Chapman Scott C.,Zheng BangyouORCID

Abstract

Ground coverage (GC) allows monitoring of crop growth and development and is normally estimated as the ratio of vegetation to the total pixels from nadir images captured by visible-spectrum (RGB) cameras. The accuracy of estimated GC can be significantly impacted by the effect of ‘mixed pixels’, which is related to the spatial resolution of the imagery as determined by flight altitude, camera resolution and crop characteristics (fine vs coarse textures). In this study, a two-step machine learning method was developed to improve the accuracy of GC of wheat (Triticum aestivum L.) estimated from coarse-resolution RGB images captured by an unmanned aerial vehicle (UAV) at higher altitudes. The classification tree-based per-pixel segmentation (PPS) method was first used to segment fine-resolution reference images into vegetation and background pixels. The reference and their segmented images were degraded to the target coarse spatial resolution. These degraded images were then used to generate a training dataset for a regression tree-based model to establish the sub-pixel classification (SPC) method. The newly proposed method (i.e. PPS-SPC) was evaluated with six synthetic and four real UAV image sets (SISs and RISs, respectively) with different spatial resolutions. Overall, the results demonstrated that the PPS-SPC method obtained higher accuracy of GC in both SISs and RISs comparing to PPS method, with root mean squared errors (RMSE) of less than 6% and relative RMSE (RRMSE) of less than 11% for SISs, and RMSE of less than 5% and RRMSE of less than 35% for RISs. The proposed PPS-SPC method can be potentially applied in plant breeding and precision agriculture to balance accuracy requirement and UAV flight height in the limited battery life and operation time.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3