Genomic prediction of weight and wool traits in a multi-breed sheep population

Author:

Moghaddar N.,Swan A. A.,van der Werf J. H. J.

Abstract

The objective of this study was to predict the accuracy of genomic prediction for 26 traits, including weight, muscle, fat, and wool quantity and quality traits, in Australian sheep based on a large, multi-breed reference population. The reference population consisted of two research flocks, with the main breeds being Merino, Border Leicester (BL), Poll Dorset (PD), and White Suffolk (WS). The genomic estimated breeding value (GEBV) was based on GBLUP (genomic best linear unbiased prediction), applying a genomic relationship matrix calculated from the 50K Ovine SNP chip marker genotypes. The accuracy of GEBV was evaluated as the Pearson correlation coefficient between GEBV and accurate estimated breeding value based on progeny records in a set of genotyped industry animals. The accuracies of weight traits were relatively low to moderate in PD and WS breeds (0.11–0.27) and moderate to relatively high in BL and Merino (0.25–0.63). The accuracy of muscle and fat traits was moderate to relatively high across all breeds (between 0.21 and 0.55). The accuracy of GEBV of yearling and adult wool traits in Merino was, on average, high (0.33–0.75). The results showed the accuracy of genomic prediction depends on trait heritability and the effective size of the reference population, whereas the observed GEBV accuracies were more related to the breed proportions in the multi-breed reference population. No extra gain in within-breed GEBV accuracy was observed based on across breed information. More investigations are required to determine the precise effect of across-breed information on within-breed genomic prediction.

Publisher

CSIRO Publishing

Subject

Animal Science and Zoology,Food Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3