Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview

Author:

Rengasamy P.

Abstract

More than 60% of the 20 million ha of cropping soils in Australia are sodic and farming practices on these soils are mainly performed under dryland conditions. More than 80% of sodic soils in Australia have dense clay subsoils with high sodicity and alkaline pH (>8.5). The actual yield of grains in sodic soils is often less than half of the potential yield expected on the basis of climate, because of subsoil limitations such as salinity, sodicity, alkalinity, nutrient deficiencies and toxicities due to boron, carbonate and aluminate. Sodic subsoils also have very low organic matter and biological activity. Poor water transmission properties of sodic subsoils, low rainfall in dryland areas, transpiration by vegetation and high evaporation during summer have caused accumulation of salts in the root zone layers. This transient salinity, not influenced by groundwater, is extensive in many sodic soil landscapes in Australia where the watertable is deep. ‘Dryland salinity’ is currently given wide attention in the public debate and in government policies, but only focusing on salinity induced by shallow watertables. While 16% of the dryland cropping area is likely to be affected by watertable-induced salinity, 67% of the area has a potential for transient salinity not associated with groundwater and other subsoil constraints and costing the Australian farming economy in the vicinity of A$1330 million per year. A different strategy for different types of dryland salinity is essential for the sustainable management and improved productivity of dryland farming. This paper discusses the sodic subsoil constraints, different types of salinity in the dryland regions, the issues related to the management of sodic subsoils and the future priorities needed in addressing these problems. It also emphasises that transient salinity in the root zone of dryland agricultural soils is an important issue with potential for worse problems than watertable-induced seepage salinity.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3