Keystone Microbial Species Drive the Responses of Saline–Alkali Soil to Three-Year Amendment Measures

Author:

Ma Shilin1,Liu Xiaowu1,Liu Jing1,Zeng Jingyi1,Zhou Xiaochun2,Jia Zhaohui1,Li Chong1,Leng Huimei3,Liu Xin1,Zhang Jinchi1

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China

2. Dafeng Forest Farm, Yancheng 224111, China

3. Nanjing Water Planning and Designing Institute Co., Ltd., Nanjing 210022, China

Abstract

Saline–alkali soils exhibit ionic toxicities associated with neutral salinity, as well as a high pH that hinders the exclusion of sodium ions and absorption of vital nutrients; thus, obstructing the development of coastal shelterbelts. A three-year field experiment using a high-soil-pH site was conducted for this study to investigate the influences of five prospective amendments on the soil microenvironments of different soil layers compared to a control. Firstly, the bacterial phyla Proteobacteria, Firmicutes, and Actinobacteria were found to be the most predominant in the samples. As for the fungi phylum, Ascomycota was identified as the most abundant. Similar to Module 1’s findings, the relative abundances of Ascomycota varied across treatments. Additionally, differences in the ACE index were primarily observed in the deeper soil layers, where all five soil amendments increased the bacterial ACE index compared to the CK (no additive). Only the BA (biochar mixed with arbuscular mycorrhizal fungi) and AM (arbuscular mycorrhizal fungi on its own) treatments significantly increased the fungal ACE index. In the 20–40 cm soil layer, the pH value of the control group was significantly higher than that of all other treatments, except for the AM treatment. However, the AM treatment induced significantly higher soil enzyme activities and available nutrients compared to the CK. Moreover, the Mantel test showed significant correlations between the Module 1 community, the generalist (microbial species that serve as module hubs and connectors, primarily for Acidobacteria) community and soil pH, electrical conductivity, enzyme activities, as well as bacterial and fungal ACE indices. Pearson’s correlation revealed a significantly positive association between enzyme activities and available nutrients. Our findings suggested that keystone microbial species have the potential to improve the availability of soil nutrients through the regulation of microbial diversity and stimulation of soil enzyme activities, to ultimately ameliorate saline–alkali soil. Furthermore, the application of AM in combination with an appropriate amount of biochar is a preferred strategy for the improvement of saline–alkali soils.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Jiangsu Science and Technology Plan Project

Priority Academic Program Development of Jiangsu Higher Education Institutions

Innovation and Promotion of Forestry Science and Technology Program of Jiangsu Province

Publisher

MDPI AG

Subject

Forestry

Reference60 articles.

1. Climate change and soil salinity: The case of coastal Bangladesh;Dasgupta;Ambio,2015

2. Pennock, D., and McKenzie, N. (2015). Status of the World’s Soil Resources: Technical Summary, FAO.

3. A Gγ protein regulates alkaline sensitivity in crops;Zhang;Science,2023

4. Tolerance responses of Brassica juncea to salinity, alkalinity and alkaline salinity;Javid;Funct. Plant Biol.,2012

5. Environmental salinization processes: Detection, implications & solutions;Ondrasek;Sci. Total Environ.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3