Impact of injected water salinity on CO2 storage efficiency in homogenous reservoirs

Author:

Al-Khdheeawi Emad A.,Vialle Stephanie,Barifcani Ahmed,Sarmadivaleh Mohammad,Iglauer Stefan

Abstract

Water alternating gas (WAG) injection significantly improves enhanced oil recovery efficiency by improving the sweep efficiency. However, the impact of injected water salinity during WAG injection on CO2 storage efficiency has not been previously demonstrated. Thus, a 3D reservoir model has been developed for simulating CO2 injection and storage processes in homogeneous reservoirs with different water injection scenarios (i.e. low salinity water injection (1000 ppm NaCl), high salinity water injection (250 000 ppm NaCl) and no water injection), and the associated reservoir-scale CO2 plume dynamics and CO2 dissolution have been predicted. Furthermore, in this work, we have investigated the efficiency of dissolution trapping with and without WAG injection. For all water injection scenarios, 5000 kton of CO2 were injected during a 10-year CO2 injection period. For high and low salinity water injection scenarios, 5 cycles of CO2 injection (each cycle is one year) at a rate of 1000 kton/year were carried out, and each CO2 cycle was followed by a one year water injection at a rate of 0.015 pore volume per year. This injection period was followed by a 500-year post injection (storage) period. Our results clearly indicate that injected water salinity has a significant impact on the quantity of dissolved CO2 and on the CO2 plume dynamics. The low salinity water injection resulted in the maximum CO2 dissolution and minimum vertical migration of CO2. Also, our results show that WAG injection enhances dissolution trapping and reduces CO2 leakage risk for both injected water salinities. Thus, we conclude that the low salinity water injection improves CO2 storage efficiency.

Publisher

CSIRO Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3