Identification of trophic niches of subterranean diving beetles in a calcrete aquifer by DNA and stable isotope analyses

Author:

Bradford Tessa M.,Humphreys William F.,Austin Andrew D.,Cooper Steven J. B.

Abstract

The Yilgarn calcrete aquifers in Western Australia are an interesting system for investigating the process of speciation within subterranean habitats, because of the limited opportunities for dispersal between isolated calcretes. The presence of different-sized diving beetles (Dytiscidae) in separate calcretes, including sympatric sister-species pairs, suggests that species may have evolved within calcretes by an adaptive shift as a result of ecological-niche differentiation. We have studied the potential for trophic niche partitioning in a sister triplet of diving beetles, of distinctly different sizes, from a single aquifer. Fragments of the mitochondrial COI gene, specific to known species of amphipods and copepods, were polymerase chain reaction-amplified from each of the three beetle species, indicating that there is an overlap in their prey items. Significant differences were found in the detected diets of the three species, and results showed a propensity for prey preferences of amphipods by the large beetles and one species of copepod for the small beetles. A terrestrial source of carbon to the calcrete was suggested by stable isotope analyses. The combined approach of molecular, stable isotope and behavioural studies have provided insight into the trophic ecology of this difficult-to-access environment, providing a framework for more fine-scale analyses of the diet of different-sized species to examine speciation underground.

Publisher

CSIRO Publishing

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aquatic subterranean food webs: A review;Global Ecology and Conservation;2023-12

2. Evolutionary transition from surface to subterranean living in Australian water beetles (Coleoptera: Dytiscidae) through adaptive and relaxed selection;Biological Journal of the Linnean Society;2023-10-19

3. The Unique Australian Subterranean Dytiscidae: Diversity, Biology, and Evolution;Ecology, Systematics, and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae);2023

4. Predator–Prey Ecology of Dytiscids;Ecology, Systematics, and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae);2023

5. Trophic Interactions in Subterranean Environments;Encyclopedia of Inland Waters;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3