Preliminary characterisation of two early meiotic wheat proteins after identification through 2D gel electrophoresis proteomics

Author:

Khoo Kelvin H. P.,Able Amanda J.,Chataway Timothy K.,Able Jason A.

Abstract

Various genetic-based approaches including mutant population screens, microarray analyses, cloning and transgenesis have broadened our knowledge of gene function during meiosis in plants. Nonetheless, these genetic tools are not without inherent limitations. One alternative approach to studying plant meiosis, especially in polyploids such as Triticum aestivum L. (bread wheat), is proteomics. However, protein-based approaches using proteomics have seldom been described, with only two attempts at studying early plant meiosis reported. Here, we report the investigation of early bread wheat meiosis using proteomics. Five differentially expressed protein spots were identified using 2D gel electrophoresis (2DGE) on protein extracts from four pooled stages of meiosis and three genotypes (Chinese Spring wild-type, ph1b and ph2a wheat mutant lines). Tandem mass spectrometry (MS/MS) identification of peptides from these protein spots led to the isolation and characterisation of the full-length clones of a wheat Speckle-type POZ protein, an SF21-like protein and HSP70, and a partial coding sequence of a hexose transporter. Significantly, the putative functions of the Speckle-type POZ protein and HSP70 were confirmed using in vitro DNA binding assays. Through the use of a 2DGE proteomics approach, we show that proteomics is a viable alternative to genetic-based approaches when studying meiosis in wheat. More significantly, we report a potential role for a Speckle-type POZ protein and a HSP70 in chromosome pairing during the early stages of meiosis in bread wheat.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3