Stocks, composition and vulnerability to loss of soil organic carbon predicted using mid-infrared spectroscopy

Author:

Baldock J. A.,Beare M. H.,Curtin D.,Hawke B.

Abstract

Developing a routine and cost effective capability for measuring soil organic carbon (SOC) content and composition will allow identification of land management practices with a potential to maintain or enhance SOC stocks. Coupling SOC content data and mid-infrared (MIR) spectra through the application of partial least-squares regression (PLSR) analyses has been used to develop such a prediction capability. The objective of this study was to determine whether MIR/PLSR analyses provide accurate estimates of the content and composition of SOC that can be used to quantify SOC stocks and its potential vulnerability to loss. Soil was collected from a field trial incorporating a range of land use (pasture, arable cropping and bare fallow) and tillage (intensive, minimum and no tillage) treatments over a nine-year period. The SOC content was measured by dry combustion analysis. Particulate organic carbon was separated from other forms of carbon on the basis of particle size (SOC in the >50 µm fraction). Resistant organic carbon was quantified using solid-state 13C nuclear magnetic resonance. The MIR/PLSR algorithms were successfully developed to predict the natural logarithms of the contents of SOC and POC in the collected soils. With initial calibration, a single MIR analysis could be used in conjunction with PLSR algorithms to predict the content of SOC and its allocation to component fractions. The MIR/PLSR predicted SOC contents provided reliable estimates of the impact of agricultural management on the 0–25-cm SOC stocks, as well as an indication of the vulnerability of SOC to loss. Development of this capability will facilitate the rapid and cost effective collection of SOC content data for detecting the impact of agricultural management treatments on SOC stocks, composition and potential vulnerability to change.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3