Soil water storage, drainage, and leaching in four irrigated cotton-based cropping systems sown in a Vertosol with subsoil sodicity

Author:

Hulugalle N. R.,Weaver T. B.,Finlay L. A.

Abstract

Comparative studies of drainage and leaching in irrigated cotton (Gossypium hirsutum L.) based cropping systems in Australian Vertosols are sparse. Our objective was to quantify soil water storage, drainage, and leaching in four cotton-based cropping systems sown on permanent beds in an irrigated Vertosol with subsoil sodicity. Drainage was inferred using the chloride mass-balance method, and soil water storage and leaching were measured with a neutron moisture meter and ceramic-cup water samplers, respectively, from September 2005 to May 2011 in an ongoing experiment. The experimental treatments were: CC, cotton monoculture, summer cotton with winter fallow; CV, cotton–vetch (Vicia benghalensis L.) rotation with vetch stubble retained as in-situ mulch; CW, cotton–wheat (Triticum aestivum L.), with wheat stubble incorporated and a summer–winter fallow; and CWV, cotton–wheat–vetch, with wheat and vetch stubbles retained as in-situ mulch and summer and spring fallows. Soil water storage was generally highest under CW and CWV and least under CV. An untilled short fallow (~3 months) when combined with retention of crop residues as surface mulch, as in CWV, was as effective in harvesting rainfall as a tilled long fallow (~11 months) with stubble incorporation, as in CW. Drainage under cotton was generally in the order CW ≥ CWV > CC = CV, all of which were considerably greater than drainage during fallows. Except for very wet and dry winters, drainage under wheat rotation crops was greater than that under vetch. During wet winters, saturated soil in the 0–0.6 m depth of treatments under fallow resulted in more drainage than in the drier, cropped plots. No definitive conclusions could be made with respect to the effects of cropping systems on salt and nutrient leaching. Leachate contained less nitrate-nitrogen, magnesium, and potassium, but leachate electrical conductivity was ~6 times higher than infiltrated water. The greater salinity of the leachate may pose a risk to groundwater resources.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3