Changes in soil organic carbon and nitrogen after 47 years with different tillage, stubble and fertiliser management in a Vertisol of north-eastern Australia

Author:

Page K. L.ORCID,Dalal R. C.ORCID,Reeves S. H.,Wang W. J.,Jayaraman SomasundaramORCID,Dang Y. P.

Abstract

No-till (NT) farming has been widely adopted to assist in reducing erosion, lowering fuel costs, conserving soil moisture and improving soil physical, chemical and biological characteristics. Improvements in soil characteristics are often driven by the greater soil organic matter accumulation (as measured by soil organic carbon (SOC)) in NT compared to conventional tillage (CT) farming systems. However, to fully understand the effect of NT it is important to understand temporal changes in SOC by monitoring over an extended period. We investigated the long-term effect of NT and stubble retention (SR) on changes in SOC and total soil nitrogen (STN) using results from an experiment that has been running for 50 years in a semi-arid subtropical region of north-eastern Australia. In this experiment, the effects of tillage (CT vs NT), residue management (stubble burning (SB) vs SR), and nitrogen (N) fertiliser (0 and 90 kg-N ha–1) were measured in a balanced factorial experiment on a Vertisol (Ustic Pellusert). The use of NT, SR and N fertiliser generally improved SOC (by up to 12.8%) and STN stocks (by up to 31.7%) in the 0–0.1 m layer relative to CT, SB and no N fertiliser, with the greatest stocks observed where all three treatments were used in combination. However, declines in SOC (up to 20%) and STN (up to 25%) occurred in all treatments over the course of the experiment, indicating that changes in management practices were unable to prevent a loss of soil organic matter over time in this farming system. However, the NT and SR treatments did lose less SOC than CT and SB treatments, and SR also reduced STN loss. The δ13C analysis of samples collected in 2008 and 2015 highlighted that crop residues have significantly contributed to SOC stocks at the site and that their contribution is increasing over time.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3