Abstract
No-till (NT) farming has been widely adopted to assist in reducing erosion, lowering fuel costs, conserving soil moisture and improving soil physical, chemical and biological characteristics. Improvements in soil characteristics are often driven by the greater soil organic matter accumulation (as measured by soil organic carbon (SOC)) in NT compared to conventional tillage (CT) farming systems. However, to fully understand the effect of NT it is important to understand temporal changes in SOC by monitoring over an extended period. We investigated the long-term effect of NT and stubble retention (SR) on changes in SOC and total soil nitrogen (STN) using results from an experiment that has been running for 50 years in a semi-arid subtropical region of north-eastern Australia. In this experiment, the effects of tillage (CT vs NT), residue management (stubble burning (SB) vs SR), and nitrogen (N) fertiliser (0 and 90 kg-N ha–1) were measured in a balanced factorial experiment on a Vertisol (Ustic Pellusert). The use of NT, SR and N fertiliser generally improved SOC (by up to 12.8%) and STN stocks (by up to 31.7%) in the 0–0.1 m layer relative to CT, SB and no N fertiliser, with the greatest stocks observed where all three treatments were used in combination. However, declines in SOC (up to 20%) and STN (up to 25%) occurred in all treatments over the course of the experiment, indicating that changes in management practices were unable to prevent a loss of soil organic matter over time in this farming system. However, the NT and SR treatments did lose less SOC than CT and SB treatments, and SR also reduced STN loss. The δ13C analysis of samples collected in 2008 and 2015 highlighted that crop residues have significantly contributed to SOC stocks at the site and that their contribution is increasing over time.
Subject
Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献