Influence of culture regime on arsenic cycling by the marine phytoplankton Dunaliella tertiolecta and Thalassiosira pseudonana

Author:

Duncan Elliott G.,Maher William A.,Foster Simon D.,Krikowa Frank

Abstract

Environmental context Phytoplankton form the base of marine food-webs, and hence they have been proposed as the likely source of many arsenic compounds found in marine animals. Because of the difficulties associated with field experiments with phytoplankton, attempts to test this hypothesis have relied mainly on laboratory experiments. This study assesses the environmental validity of this research approach by investigating the influence of the culturing experimental protocol on the uptake, accumulation and biotransformation of arsenic by marine phytoplankton. Abstract Arsenic cycling by the marine phytoplankton Dunaliella tertiolecta and the marine diatom Thalassiosira pseudonana was influenced by culture regime. Arsenic was associated with the residue cell fractions of batch cultured phytoplankton (D. tertiolecta and T. pseudonana), due to the accumulation of dead cells within batch cultures. Greater arsenic concentrations were associated with water-soluble and lipid-soluble cell fractions of continuously cultured phytoplankton. Arsenoribosides (as glycerol (Gly-), phosphate (PO4-) and sulfate (OSO3-)) were ubiquitous in D. tertiolecta (Gly- and PO4- only) and T. pseudonana (all three species). Additionally, arsenobetaine (AB) was not detected in any phytoplankton tissues, illustrating that marine phytoplankton themselves are not an alternate source of AB. Arsenic species formation was influenced by culture regime, with PO4-riboside produced under nutrient rich conditions, whereas Dimethylarsenoacetate (DMAA) was found in old (>42 days old) batch cultures, with this arsenic species possibly produced by the degradation of arsenoribosides-arsenolipids from decomposing cells rather than by biosynthesis. Nutrient availability, hence culture regime was thus influential in directly and indirectly influencing arsenic cycling and the arsenic species produced by D. tertiolecta and T. pseudonana. Future research should thus utilise continuous culture regimes to study arsenic cycling as these are far more analogous to environmental processes.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3