Author:
Maher W.,Foster S.,Krikowa F.
Abstract
Although over 50 arsenic species have been identified in marine organisms, the biochemical pathways by which these species are formed are not known. In this paper, we present an overview of bioconversions of arsenic species that occur in marine food chains based on studies conducted by our laboratory as well as the work of others. Phytoplankton and macroalgae only contain dimethylarsenoribosides or simple methylated arsenic compounds such as dimethylarsenate and dimethylarsenoethanol. Marine animals contain mostly arsenobetaine and a range of other arsenic species that may be precursors of arsenobetaine formation. The formation of arsenobetaine in marine animals from dimethylarsenoribosides may occur through a two-stage conversion pathway: arsenoriboside or trimethylarsonioriboside degradation to arsenocholine followed by quantitative oxidation to arsenobetaine. The minor arsenic species found in marine organisms are sulfur analogues of compounds found in the S-adenosylmethionine-methionine salvage and the dimethylsulfoniopropionate metabolic pathway of animals. A key intermediate in these pathways would be arsenomethionine, which could possibly be formed from dimethylarsinite, dimethylarsenoribosides or an arsenic-containing analogue of S-adenosylmethionine. Examining arsenic species in whole ecosystems has the advantage of using the pattern of arsenic species found to postulate the biochemical pathways of their formation.
Subject
Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献