Role of phytoplankton in aquatic mercury speciation and transformations

Author:

Cossart Thibaut,Garcia-Calleja Javier,Santos João P.ORCID,Kalahroodi Elaheh Lotfi,Worms Isabelle A. M.,Pedrero Zoyne,Amouroux David,Slaveykova Vera I.ORCID

Abstract

Environmental context Understanding mercury transformations in the aquatic environment is of utmost importance for the improvement of mercury biogeochemical modelling and sound environmental risk assessment. In such a context, we discuss critically the advancement in the knowledge on the role of the phytoplankton (algae and cyanobacteria) in mercury cycling and transformations in the aquatic environment. Important research advances revealed that different microalgal species and cyanobacteria contribute: to biotic reduction of inorganic mercury to elemental mercury; to demethylation of methylmercury and transformation of inorganic mercury into metacinnabar; and to production of different biomolecules which can contribute to abiotic mercury reduction. Abstract Phytoplankton may directly influence biogeochemical cycling and transformations of mercury (Hg) through biotic transformations of the accumulated metal via methylation/demethylation and reduction/oxidation, and indirectly, through the excretion of low and high molecular weight ligands, likely triggering or influencing different abiotic transformation pathways as well as the transformations carried out by bacteria. However, unlike the extensive work already done on the role of bacteria in Hg transformations, the current knowledge about the influence of phytoplankton (algae and cyanobacteria) on such processes is still limited. Critical evaluation of the existing advances in the research topic revealed that different microalgal species and cyanobacteria contribute to the biotic reduction of inorganic mercury (iHg or HgII) into elemental Hg (Hg0), monomethylmercury (MeHg) demethylation and transformation of iHg into metacinnabar. The low and high molecular weight biomolecules released by phytoplankton can complex Hg species and contribute to abiotic mercury reduction. Despite these advances, the underlying mechanisms and their importance in the aquatic environment are to be explored and detailed. The development of novel molecular, stable isotope-based and multi-omics approaches would provide further impetus for the understanding of the key interactions between Hg species and phytoplankton. Such understanding will be of utmost importance for the improvement of Hg biogeochemical modelling, mitigation strategies and rational environmental risk assessment in the changing aquatic environment.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3