Methylmercury Effect and Distribution in Two Extremophile Microalgae Strains Dunaliella salina and Coccomyxa onubensis from Andalusia (Spain)

Author:

Simansky Samuel12,Holub Jiří2ORCID,Márová Ivana2ORCID,Cuaresma María1ORCID,Garbayo Ines1ORCID,Torronteras Rafael3,Vílchez Carlos1ORCID,Gojkovic Zivan1ORCID

Affiliation:

1. Algal Biotechnology Group, Centro de Investigación y Desarrollo de Recursos y Tecnologías Agroalimentarias (CIDERTA), University of Huelva, 21007 Huelva, Spain

2. Faculty of Chemistry, Brno University of Technology, Purkyñova 118, 61200 Brno, Czech Republic

3. Department of Environmental Biology and Public Health, Experimental Science Faculty, University of Huelva, 21007 Huelva, Spain

Abstract

The main entrance point of highly toxic organic Hg forms, including methylmercury (MeHg), into the aquatic food web is phytoplankton, which is greatly represented by various natural microalgal species. Processes associated with MeHg fate in microalgae cells such as uptake, effects on cells and toxicity, Hg biotransformation, and intracellular stability are detrimental to the process of further biomagnification and, as a consequence, have great importance for human health. The study of MeHg uptake and distribution in cultures of marine halophile Dunaliella salina and freshwater acidophilic alga Coccomyxa onubensis demonstrated that most of the MeHg is imported inside the cell, while cell surface adhesion is insignificant. Almost all MeHg is removed from the culture medium after 72 h. Significant processes in rapid MeHg removal from liquid medium are its abiotic photodegradation and volatilization associated with algal enzymatic activity. The maximum intracellular accumulation for both species was in 80 nM MeHg-exposed cultures after 24 h of exposure for D. salina (from 27 to 34 µg/gDW) and at 48 h for C. onubensis (up to 138 µg/gDW). The different Hg intakes in these two strains could be explained by the lack of a rigid cell wall in D. salina and the higher chemical ability of MeHg to pass through complex cell wall structures in C. onubensis. Electron microscopy studies on the ultrastructure of both strains demonstrated obvious microvacuolization in the form of many very small vacuoles and partial cell membrane disruption in 80 nM MeHg-exposed cultures. Results further showed that Coccomyxa onubensis is a good candidate for MeHg-contaminated water reclamation due to its great robustness at nanomolar concentrations of MeHg coupled with its very high intake and almost complete Hg removal from liquid medium at the MeHg levels tested.

Funder

Spanish Ministry of Economic Transformation, Industry, Knowledge and Universities

European Regional Development Fund

Andalusian Plan for Research, Development and Innovation

Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3