Acclimation by the Thylakoid Membranes to Growth Irradiance and the Partitioning of Nitrogen Between Soluble and Thylakoid Proteins

Author:

Evans JR

Abstract

Three characteristics of shade plants are reviewed. Firstly, they have relatively more chlorophyll b and the associated light-harvesting chlorophyll a/b-protein complex (LHC). Two currently accepted reasons for this are not supported by quantitative analysis. Instead, the reduced protein cost of complexing chlorophyll in LHC and the turnover of the 32 kDa herbicide binding protein are considered. Secondly, shade plants have low electron transport capacities per unit of chlorophyll. This is primarily related to a reduction in the amount of electron transport components such as the cytochrome f complex and the ATPase. The nitrogen cost of the thylakoid membranes per unit of light absorbed is thereby reduced, but the irradiance range over which light is used with high efficiency is also reduced. Thirdly, shade plants have less RuP2 carboxylase and other soluble proteins for a given amount of chlorophyll. However, while the ratio of RuP2 carboxylase protein to thylakoid protein declined, the ratio of the RuP2 carboxylase activity to electron transport activity increased. For several species, the relationship between the rate of CO2 assimilation and leaf nitrogen content depends on the irradiance during growth.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3