Optimal coordination between photosynthetic acclimation strategy and canopy architecture in two contrasting cucumber cultivars

Author:

Pao Yi-Chen1ORCID,Stützel Hartmut1,Chen Tsu-Wei2ORCID

Affiliation:

1. Institute of Horticultural Production Systems, Leibniz Universität Hannover , Lower Saxony, Herrenhäuser Straße 2, 30419 Hannover , Germany

2. Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin , Lentzeallee 75, 14195 Berlin , Germany

Abstract

AbstractCrop varieties differing in architectural characteristics (AC) vary in their intra-canopy light distribution. To optimize canopy photosynthesis, we hypothesize that varieties with contrasting AC possess different photosynthetic acclimation strategy (PAS) with respect to photosynthetic nitrogen (Np) partitioning. We firstly used in silico experiments to test this hypothesis and suggested a trade-off in Np partitioning between carboxylation and light harvesting to achieve optimal coordination between PAS, AC and growing light environment. Then, two cucumber (Cucumis sativus L.) cultivars, Aramon and SC-50, which were bred under greenhouse vertical single-stem and field creeping multi-branch canopy, were selected for studying their differences in AC and PAS using greenhouse and growth chamber experiments, respectively. In the greenhouse, more horizontal leaves of SC-50 resulted in steeper intra-canopy light gradient and a higher degree of self-shading, especially in the upper canopy layer. In growth chamber experiments, Aramon invested more leaf nitrogen into photosynthesis than SC-50, and the proportion (pNp) increased as light was reduced. In contrast, pNp of SC-50 did not respond to light but SC-50 partitioned its limited Np between carboxylation and light harvesting functions more effectively, showing a strategy particularly advantageous for canopies with a high degree of self-shading. This is further confirmed by additional in silico experiments showing that Np partitioning of SC-50 coped better with the impact of strong light competition caused by low light and by leaf clumping under high planting density. These findings provide a comprehensive perspective of genotypic variation in PAS, canopy architectures and their optimal coordination.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Agronomy and Crop Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3