Agglomeration and dissolution of zinc oxide nanoparticles: role of pH, ionic strength and fulvic acid

Author:

Domingos Rute F.,Rafiei Zohreh,Monteiro Carlos E.,Khan Mohammad A.K.,Wilkinson Kevin J.

Abstract

Environmental context The number of nano-enabled products reaching consumers is growing exponentially, inevitably resulting in their release to the environment. The environmental fate and mobility of nanomaterials will depend on their physicochemical form(s) under natural conditions. For ZnO nanoparticles, determinations of agglomeration and dissolution under environmentally relevant conditions of pH, ionic strength and natural organic matter content will provide insight into the potential environmental risk of these novel products. Abstract The increasing use of engineered nanoparticles (ENPs) in industrial and household applications has led to their release into the environment and increasing concern about their effects. Proper assessment of the ecological risks of ENPs will require data on their bioavailability, persistence and mobility over a broad range of physicochemical conditions, including environmentally relevant pH, ionic strength and concentrations of natural organic matter (NOM). In this study, fluorescence correlation spectroscopy was used to determine the agglomeration of a ZnO ENP (nZnO) with a nominal size of 20nm. Particle dissolution was followed using scanned stripping chronopotentiometry. The effects of Suwannee River fulvic acid (SRFA, 0–60mgL–1) and the roles of pH (4–10) and ionic strength (0.005–0.1M) were carefully evaluated. Agglomeration of the bare nZnO increased for pH values near the zero point of charge, whereas the dissolution of the particles decreased. At any given pH, an increase in ionic strength generally resulted in a less stable colloidal system. The role of SRFA was highly dependent upon its concentration with increased agglomeration observed at low SRFA : nZnO mass ratios and decreased agglomeration observed at higher SRFA : nZnO mass ratios. The results indicated that in natural systems, both nZnO dispersion and dissolution will be important and highly dependent upon the precise conditions of pH and ionic strength.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3