Zinc Oxide Nanoparticles in the “Soil–Bacterial Community–Plant” System: Impact on the Stability of Soil Ecosystems

Author:

Strekalovskaya Elena I.1ORCID,Perfileva Alla I.2ORCID,Krutovsky Konstantin V.3456ORCID

Affiliation:

1. Laboratory of Environmental Biotechnology, A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia

2. Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia

3. Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany

4. Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Str. 3, 119333 Moscow, Russia

5. Genome Research and Education Center, Laboratory of Forest Genomics, Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia

6. Scientific and Methodological Center, G.F. Morozov Voronezh State University of Forestry and Technologies, Timiryazeva Str. 8, 394036 Voronezh, Russia

Abstract

The use of man-made nanoparticles (NPs) has increased exponentially in recent years, many of which accumulate in significant quantities in soil, including through use in agriculture as nanofertilizers and nanopesticides. ZnO NPs are more environmentally friendly but have specific antimicrobial activity, which can affect soil microbiota, thereby influencing key microbial processes such as mineralization, nitrogen fixation and plant growth-promoting activities. Their behavior and persistence in soil depend on their chemical nature and soil characteristics. This review summarizes the applications of ZnO NPs in soil systems and their effects on various plants and soil microorganisms, particularly rhizobacteria that promote plant growth. A stimulating effect of ZnO NPs on the morphometric and biochemical characteristics of plants, as well as on soil microbiota and its activity at relatively low concentrations of up to 500 mg/mL and 250 mg/kg, respectively, is observed. As the concentration of ZnO NPs increases above these limits, toxic effects appear. The different effects of ZnO NPs are related to their size, dose, duration of exposure, solubility in water, as well as soil type, acidity and organic matter content. The review substantiates the need to study the behavior of ZnO NPs in the “soil-plant-microbiota” system for the possibility of using nanotechnologies in the agricultural industry and ensuring the safety of agricultural products.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3