Resistance to downy mildew in pearl millet is associated with increased phenylalanine ammonia lyase activity

Author:

Geetha N. P.,Amruthesh K. N.,Sharathchandra R. G.,Shetty H. S.

Abstract

Phenylalanine ammonia lyase (PAL) activity was studied in pearl millet cultivars with different levels of resistance to the downy mildew disease caused by Sclerospora graminicola, an important oomycete pathogen. PAL activity was elevated in resistant host cultivar and decreased in susceptible cultivars following downy mildew pathogen infection. The enzyme activation varied between cultivars and was correlated with the degree of resistance to downy mildew disease. The induction of PAL as a response to pathogen inoculation was further corroborated by a time-course study in seedlings and cultured cells of pearl millet. The level of PAL activity was highest at 1.5 h in cultured cells and 4 h in seedlings of resistant host cultivar after inoculation with Sclerospora graminicola. Further studies on PAL activity in different tissues of seedlings showed highest enzyme activity in the young growing region of the root of the resistant host cultivars. The accumulation of wall-bound phenolics and lignin was higher in the resistant cultivar seedlings as evidenced by phloroglucinol–HCl staining and p-coumaric acid assay. The temporal changes in lignin concentration and the concentration of soluble phenolics were greater in root tissues of resistant cultivars than in those of susceptible cultivars. Treatment of resistant seedlings with a PAL inhibitor, α-aminooxy-β-phenylpropionic acid, resulted in the enhancement of the enzyme activity, whereas in the presence of 1 mm trans-cinnamic acid the pathogen-induced PAL was completely inhibited. Treatment of pearl millet seedlings with exogenously applied PAL inhibitors induced downy mildew disease susceptibility in the resistant pearl millet cultivar, consistent with direct involvement of PAL in downy mildew resistance. Results are discussed with respect to the presumed importance of host phenolic compounds and lignin accumulation and its relation to PAL activation as a response to the pathogen infection.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3