Impact of sowing time, genotype, environment and maturity on biomass and yield components in faba bean (Vicia faba)

Author:

Manning Bill K.ORCID,Adhikari Kedar N.,Trethowan Richard

Abstract

Faba bean (Vicia faba L.) is a significant rotation crop in northern New South Wales. However, drought limits yield, and the reproductive structures of faba bean are sensitive to high temperatures and frost. Although early sowing can avoid terminal heat and drought stresses, the accumulation of large amounts of vegetative biomass may result in low yield. Experiments were conducted over 2 years at Breeza and Narrabri in north-western New South Wales, Australia, to examine the influence of sowing time on yield, yield components, maturity, pod distribution and biomass production. The second sowing date (early May) produced the highest yield and seed weight at both sites. However, the third sowing date (late May) produced greater yield than the first (mid-April) at Breeza, and this was associated with very high final biomass. At Narrabri, the first and third sowing dates produced similar low yield. Poorer yield in late-sown materials was likely due to terminal stress, and the impact will be greater in less favourable locations and seasons. The poorer yield of faba bean from the first sowing date was likely driven by excessive biomass accumulation, an effect that would be exacerbated in favourable seasons and locations. The lower seed weight observed at Breeza was possibly a result of greater intra-plant competition. The earliest maturing genotype had the highest yield and seed weight at both sites, indicating the importance of rapid pod growth and senescence in these warm and often water-limited environments. Dry matter production was greater with early sowing, higher moisture and warmer temperatures. In contrast to other studies, a weak relationship between biomass and yield was observed.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3