Estimating fine root longevity in a temperate Norway spruce forest using three independent methods

Author:

Gaul Dirk,Hertel Dietrich,Leuschner Christoph

Abstract

The importance of root systems for C cycling depends crucially on fine root longevity. We investigated mean values for fine root longevity with root diameter, root C/N ratio and soil depth using radiocarbon (14C) analyses in a temperate Norway spruce [Picea abies (L.) Karst.] forest. In addition, we applied sequential soil coring and minirhizotron observations to estimate fine root longevity in the organic layer of the same stand. The mean radiocarbon age of C in fine roots increased with depth from 5 years in the organic layer to 13 years in 40–60 cm mineral soil depth. Similarly, the C/N ratios of fine root samples were lowest in the organic layer with a mean value of 24 and increased with soil depth. Roots >0.5 mm in diameter tended to live longer than those being <0.5 mm in diameter. By far the strongest variability in fine root longevity estimates was due to the chosen method of investigation, with radiocarbon analyses yielding much higher estimates (5.4 years) than sequential soil coring (0.9 years) and minirhizotron observations (0.7 years). We conclude that sequential soil coring and minirhizotron observations are likely to underestimate mean fine root longevity, and radiocarbon analyses may lead to an overestimation of mean root longevity.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3